Quasicontraction Nonself-mappings on Convex Metric Spaces and Common Fixed Point Theorems

نویسندگان

  • LJILJANA GAJIĆ
  • VLADIMIR RAKOČEVIĆ
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common fixed point theorems for nonself-mappings in metrically convex spaces via altering distances

There exists extensive literature on fixed points of self-mappings in metric and Banach spaces. But in many applications the mappings under examination may not always be self-mappings, therefore fixed point theorems for nonself-mappings form a natural subject for investigation. Assad and Kirk [2] initiated the study of fixed point of nonselfmappings in metrically convex spaces. Indeed while doi...

متن کامل

Geodesic metric spaces and generalized nonexpansive multivalued mappings

In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...

متن کامل

Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces

We consider the concept of Ω-distance on a complete partially ordered G-metric space and prove some common fixed point theorems.

متن کامل

A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces

In this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. In particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005